Jump to content

OGLE-TR-111

Coordinates: Sky map 10h 53m 17.91s, −61° 24′ 20.3″
From Wikipedia, the free encyclopedia
(Redirected from OGLE-TR-111c)
OGLE-TR-111

A light curve showing the February 17, 2009 planet transit across OGLE-TR-111. Adapted from Adams et al. (2010)[1]
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Carina
Right ascension 10h 53m 17.81s[2]
Declination −61° 24′ 20.6″[2]
Apparent magnitude (V) 16.96 - 16.98[3]
Characteristics
Evolutionary stage main sequence[4]
Spectral type K[4]
Variable type planetary transit[3]
Astrometry
Proper motion (μ) RA: −8.952[2] mas/yr
Dec.: +6.216[2] mas/yr
Parallax (π)0.8978±0.0407 mas[2]
Distance3,600 ± 200 ly
(1,110 ± 50 pc)
Absolute magnitude (MV)+6.82[5]
Details
Mass0.82±0.15[5] M
Radius0.831±0.031[5] R
Luminosity0.4[6] L
Surface gravity (log g)4.12[7] cgs
Temperature4,856[7] K
Metallicity [Fe/H]0.21[7] dex
Rotational velocity (v sin i)5.0[8] km/s
Age6.6[9] Gyr
Other designations
OGLE-TR-111, V759 Carinae
Database references
SIMBADdata

OGLE-TR-111 is a yellow dwarf star approximately 3,600 light-years away in the constellation of Carina (the Keel) with an apparent magnitude of about 17. Because its apparent brightness changes when one of its planets transits, the star has been given the variable star designation V759 Carinae.

Planetary system

[edit]

In 2002 the Optical Gravitational Lensing Experiment (OGLE) survey detected that the light from the star periodically dimmed very slightly every 4 days, indicating a planet-sized body transiting the star. But since the mass of the object had not been measured, it was not clear that it was a true planet, low-mass red dwarf or something else.[10] In 2004 radial velocity measurements showed unambiguously that the transiting body is indeed a planet.[11]

The planet is probably very similar to the other "hot Jupiters" orbiting nearby stars. Its mass is about half that of Jupiter and it orbits the star at a distance less than 1/20th that of Earth from the Sun.

Unconfirmed planet candidate

[edit]

In 2005, evidence of another transit was announced. Planet "OGLE-TR-111c" is a possible extrasolar planet orbiting the star. It was first proposed in 2005 based on preliminary evidence from the Optical Gravitational Lensing Experiment (OGLE) survey. More data is required to confirm this planet candidate. If it is confirmed, OGLE-TR-111 would become one of the first stars with a pair of transiting planets.[5]

The OGLE-TR-111 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.53 ± 0.11 MJ 0.047 ± 0.001 4.0144479 ± 4.1e-06 0
c (unconfirmed) 0.7 ± 0.2 MJ 0.12 ± 0.01 16.0644 ± 0.0050 0

See also

[edit]

References

[edit]
  1. ^ Adams, E. R.; López-Morales, M.; Elliot, J. L.; Seager, S.; Osip, D. J. (May 2010). "Lack of Transit Timing Variations of OGLE-TR-111b: A Re-Analysis with Six New Epochs". The Astrophysical Journal. 714 (1): 13–24. arXiv:1003.0457. Bibcode:2010ApJ...714...13A. doi:10.1088/0004-637X/714/1/13.
  2. ^ a b c d e Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  3. ^ a b Samus’, N. N.; Kazarovets, E. V.; Durlevich, O. V.; Kireeva, N. N.; Pastukhova, E. N. (January 2017). "General catalogue of variable stars: Version GCVS 5.1". Astronomy Reports. 61 (1): 80–88. Bibcode:2017ARep...61...80S. doi:10.1134/S1063772917010085. eISSN 1562-6881. ISSN 1063-7729. S2CID 125853869.
  4. ^ a b Gallardo, J.; Minniti, D.; Valls-Gabaud, D.; Rejkuba, M. (2005). "Characterisation of extrasolar planetary transit candidates". Astronomy and Astrophysics. 431 (2): 707. arXiv:astro-ph/0410468. Bibcode:2005A&A...431..707G. doi:10.1051/0004-6361:20041929.
  5. ^ a b c d Minniti, Dante; et al. (2007). "Millimagnitude Photometry for Transiting Extrasolar Planetary Candidates. III. Accurate Radius and Period for OGLE-TR-111-b". The Astrophysical Journal. 660 (1): 858–862. arXiv:astro-ph/0701356. Bibcode:2007ApJ...660..858M. doi:10.1086/512722. S2CID 16876570.
  6. ^ Ulmer-Moll, S.; Santos, N. C.; Figueira, P.; Brinchmann, J.; Faria, J. P. (2019). "Beyond the exoplanet mass-radius relation". Astronomy and Astrophysics. 630: A135. arXiv:1909.07392. Bibcode:2019A&A...630A.135U. doi:10.1051/0004-6361/201936049.
  7. ^ a b c Sousa, S. G.; Adibekyan, V.; Delgado-Mena, E.; Santos, N. C.; Rojas-Ayala, B.; Barros, S. C. C.; Demangeon, O. D. S.; Hoyer, S.; Israelian, G.; Mortier, A.; Soares, B. M. T. B.; Tsantaki, M. (2024). "SWEET-Cat: A view on the planetary mass-radius relation". Astronomy and Astrophysics. 691: A53. arXiv:2409.11965. Bibcode:2024A&A...691A..53S. doi:10.1051/0004-6361/202451704.
  8. ^ Vidotto, A. A.; Jardine, M.; Helling, Ch. (2011). "Prospects for detection of exoplanet magnetic fields through bow-shock observations during transits". Monthly Notices of the Royal Astronomical Society. 411 (1): L46 – L50. arXiv:1011.3455. Bibcode:2011MNRAS.411L..46V. doi:10.1111/j.1745-3933.2010.00991.x.
  9. ^ Yıldız, M.; Çelik Orhan, Z.; Kayhan, C.; Turkoglu, G. E. (2014). "On the structure and evolution of planets and their host stars - effects of various heating mechanisms on the size of giant gas planets". Monthly Notices of the Royal Astronomical Society. 445 (4): 4395. arXiv:1410.5679. Bibcode:2014MNRAS.445.4395Y. doi:10.1093/mnras/stu2053.
  10. ^ Udalski, A.; et al. (2002). "The Optical Gravitational Lensing Experiment. Planetary and Low-Luminosity Object Transits in the Carina Fields of the Galactic Disk". Acta Astronomica. 52 (4): 317–359. arXiv:astro-ph/0301210. Bibcode:2002AcA....52..317U.
  11. ^ Pont, F.; et al. (2004). "The "missing link" : A 4-day period transiting exoplanet around OGLE-TR-111". Astronomy and Astrophysics. 426: L15 – L18. arXiv:astro-ph/0408499. Bibcode:2004A&A...426L..15P. doi:10.1051/0004-6361:200400066. S2CID 16553970.
[edit]